最近更新时间:2023-05-23 10:33:37
1. 登录KS3控制台,联系客服开通KS3-HDFS服务。
2. 记录KS3-HDFS的Bucket域名。
3. 大数据集群安装KS3-HDFS对应的Jar包。【Jar包地址请工单联系获取】
rz -bye
注:如果之前有使用hadoop-KS3直连客户,需要先将hadoop-ks3的Jar包删除。
4. 获取KMR ip并将Jar包拷贝到每个节点下。
awk '/clusterid/{print $NF}' /etc/hosts > kmrip
pscp.pssh -h kmrip alluxio-shaded-client-2.9.0.2-SNAPSHOT.jar /root
注:以上命令中,clusterid为变量值,填写对应的集群id。
5. 将Jar包移动至当前节点的hadoop/lib目录下。
mv alluxio-shaded-client-2.9.0.2-SNAPSHOT.jar /mnt/kmr/hadoop/1/hadoop-3.1.1/lib/
注:Jar包需要上传到集群下每个节点的hadoop/lib目录下。
6. 修改以下文件内容,增加相关KS3配置。
alluxio.user.client.base.filesystem.class=alluxio.client.file.Ks3HdfsMetaFileSystem
fs.ks3.impl=alluxio.hadoop.Ks3HdfsFileSystem
alluxio.master.rpc.addresses=ks3 hdfs endpoint地址
alluxio.ks3.hdfs.mode=true
注:
- 用户需填写对应的ks3-hdfs endpoint,示例:cn-beijing-internal.ks3-dls.ksyuncs.com。
- 如使用金山云KMR产品,可通过金山云控制台进行配置操作,注意所有的配置范围均须配置。
mapred.output.committer.class=org.apache.hadoop.mapred.FileOutputCommitter
mapreduce.outputcommitter.factory.scheme.ks3=org.apache.hadoop.mapreduce.lib.output.PathOutputCommitterFactory
spark.driver.extraClassPath=/mnt/kmr/hadoop/1/hadoop-3.1.1/lib
spark.executor.extraClassPath=/mnt/kmr/hadoop/1/hadoop-3.1.1/lib
spark.sql.parquet.output.committer.class=org.apache.parquet.hadoop.ParquetOutputCommitter
hbase.rootdir=ks3://${bucket-name}/hbase #将bucket name替换为开通ks3-hdfs的桶名称
hbase.wal.dir=hdfs://hdfs-ha/hbase
hbase.bulkload.staging.dir=/tmp/hbase-staging
7. 验证。
hdfs dfs -ls ks3://${bucket}/
注:以上命令用于验证是否配置成功,如果list出Bucket下目录/文件时,代表配置成功。
8. 切换Hadoop身份。
su - hadoop
以下将介绍KMR Hadoop、Hive或Spark如何操作KS3-HDFS。
本示例为您展示如何在KS3-HDFS上进行hadoop wordcount作业。
hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.1.jar wordcount ks3://${bucket}/input-path ks3://${bucket}/output-path
注:根据实际情况填写对应的输入地址(input-path)和输出地址(output-path),输出地址对应的文件名需要在KS3 Bucket中不存在。
本示例为您展示,Spark如何读取KS3中数据,并将处理完的数据写回至KS3。
import org.apache.spark.{SparkConf, SparkContext}
val conf = new SparkConf().setAppName("Test ks3")
val sc = new SparkContext(conf)
val pathIn = "ks3://${bucket}/path/*/*"
val inputData = sc.textFile(pathIn)
val cnt = inputData.count
println(s"count: $cnt")
val outputPath = "ks3://${bucket}/path"
val outpuData = inputData.map(e => s"$e has been processed.")
outpuData.saveAsTextFile(outputPath)
本示例为您展示,PySpark如何访问KS3中数据,并将处理完的数据写回至KS3。
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("Python Spark SQL ks3 example").getOrCreate()
pathIn = "ks3://${bucket}/path/to/read"
df = spark.read.text(pathIn)
cnt = df.count()
print(cnt)
outputPath = "ks3://${bucket}/path/to/write"
df.write.format("parquet").mode('overwrite').save(outputPath)
以下将介绍如何在KMR集群中开发Hive作业流程。
修改完core-site.xml配置文件后,需要重启Hive服务生效。
在Hive中读写KS3时,先创建一个external的表。
CREATE EXTERNAL TABLE eusers (
userid INT)
LOCATION 'ks3://${bucket}/path';
注:数据和表必须对应,否则无法查出数据
Hive作业流程示例如下:
a. 编写如下脚本,保存为hiveSample1.sql文件。
CREATE EXTERNAL TABLE kmrusers (
userid INT,
movieid INT,
rating INT,
unixtime STRING )
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE
LOCATION 'ks3://${Bucket}/users';##此处为重点,将数据放在KS3上
select * from kmrusers;
测试数据资源可下载如下数据集,并将其上传至KS3对应的目录。
资源下载:点击下载
b. 创建并运行作业。
hive -f sqlfilelocation
注:
- ${bucket}是KS3 Bucket,path是Bucket上的路径,需要您填写实际保存Hive脚本的位置。
- 您可以关联一个已有的集群,也可以自动按需创建一个,然后关联上创建的作业。
a. 编写如下脚本,上传至KS3。
USE DEFAULT;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set mapreduce.job.maps=12;
set mapreduce.job.reduces=6;
set hive.stats.autogather=false;
DROP TABLE uservisits;
CREATE EXTERNAL TABLE uservisits (sourceIP STRING,destURL STRING,visitDate STRING,adRevenue DOUBLE,userAgent STRING,countryCode STRING,languageCode STRING,searchWord STRING,duration INT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS SEQUENCEFILE LOCATION 'ks3://${bucket}/path';
注:其中${bucket}是您的KS3 Bucket,path是Bucket上的路径,需要您填写实际保存uservisits的位置。
可以下载作业需要的资源,并将其上传至您KS3对应的目录。
测试数据 :点击下载
b. 在KMR中创建Hive作业,并运行。
CREATE EXTERNAL TABLE kmrusers (
userid INT,
movieid INT,
rating INT,
unixtime STRING )
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE
LOCATION 'ks3://ks3-hdfs-test-2/users';
利用KS3-HDFS将Hbase数据存储到KS3,以此摆脱对HDFS本地盘的依赖,降低存储成本。Hbase写模型使用LSMT,可靠写依赖对wal文件append,同时对性能要求高,因此将wal放到HDFS。
开通KS3-HDFS服务,请参见KS3-HDFS服务开通文档。
报错信息:
解决方法:
1. hbase pe --rows=5000000 --oneCon=true --presplit=10 --nomapred randomWrite 10
2023-05-16 11:01:33,505 INFO [TestClient-2] hbase.PerformanceEvaluation: Mean = 484.29
Min = 1.00
Max = 9333906.00
StdDev = 31403.17
50th = 2.00
75th = 2.00
95th = 7.00
99th = 11.00
99.9th = 98.00
99.99th = 1681804.71
99.999th = 3823417.57
2023-05-16 11:01:33,505 INFO [TestClient-2] hbase.PerformanceEvaluation: No valueSize statistics available
2023-05-16 11:01:33,505 INFO [TestClient-2] hbase.PerformanceEvaluation: Finished class org.apache.hadoop.hbase.PerformanceEvaluation$RandomWriteTest in 1983275ms at offset 10000000 for 5000000 rows (2.48 MB/s)
2023-05-16 11:01:33,505 INFO [TestClient-2] hbase.PerformanceEvaluation: Finished TestClient-2 in 1983275ms over 5000000 rows
2023-05-16 11:01:33,505 INFO [main] hbase.PerformanceEvaluation: [RandomWriteTest] Summary of timings (ms): [1975841, 1962506, 1983275, 1977824, 1983030, 1966597, 1974498, 1965165, 1977491, 1974590]
2023-05-16 11:01:33,594 INFO [main] hbase.PerformanceEvaluation: [RandomWriteTest duration ] Min: 1962506ms Max: 1983275ms Avg: 1974081ms
2023-05-16 11:01:33,594 INFO [main] hbase.PerformanceEvaluation: [ Avg latency (us)] 407
2023-05-16 11:01:33,594 INFO [main] hbase.PerformanceEvaluation: [ Avg TPS/QPS] 25329 row per second
2. hbase pe --rows=500000 --oneCon=true --presplit=10 --nomapred sequentialWrite 10
2023-05-16 14:04:09,300 INFO [TestClient-9] hbase.PerformanceEvaluation: No valueSize statistics available
2023-05-16 14:04:09,300 INFO [TestClient-9] hbase.PerformanceEvaluation: Finished class org.apache.hadoop.hbase.PerformanceEvaluation$SequentialWriteTest in 191485ms at offset 4500000 for 500000 rows (2.57 MB/s)
2023-05-16 14:04:09,300 INFO [TestClient-9] hbase.PerformanceEvaluation: Finished TestClient-9 in 191485ms over 500000 rows
2023-05-16 14:04:09,300 INFO [main] hbase.PerformanceEvaluation: [SequentialWriteTest] Summary of timings (ms): [151740, 155557, 151781, 158284, 191424, 152046, 191416, 191612, 158239, 191485]
2023-05-16 14:04:09,392 INFO [main] hbase.PerformanceEvaluation: [SequentialWriteTest duration ] Min: 151740ms Max: 191612ms Avg: 169358ms
2023-05-16 14:04:09,392 INFO [main] hbase.PerformanceEvaluation: [ Avg latency (us)] 337
2023-05-16 14:04:09,392 INFO [main] hbase.PerformanceEvaluation: [ Avg TPS/QPS] 29855 row per second
2023-05-16 14:04:09,392 INFO [main] client.AsyncConnectionImpl: Connection has been closed by main.
3. hbase pe --rows=500000 --oneCon=true --multiGet=10 --nomapred randomRead 20
查询QPS约670
关于KS3-HDFS更多详细信息请参考文档:KS3-HDFS服务概述。
纯净模式